Geoacoustic inversion performed from two source-receive arrays in shallow water

Alexey Sukhovich, Philippe Roux, Marc Wathelet

Laboratoire de Géophysique Interne et Tectonophysique,
Université Joseph Fourier,
CNRS UMR 5559,
Grenoble, FRANCE

in collaboration with

W.A. Kuperman

M. Stevenson
Outline

• Introduction

• Experiments

• Double Beamforming* (DBF) between two transducer arrays

• Bottom parameters retrieval via DBF

• Experimental results: Tank experiment

• Experimental results: At-sea experiment

• Conclusions

* Roux et al., JASA 124, 3430 (2008)
Shallow-Water Waveguides

GEOMETRY
Length \(L \gg \text{Depth } d \)
Source depth \(z_e \)
Receiver depth \(z_r \)

When \(\lambda \ll d \), \(L \Rightarrow \text{Ray-picture} \)

Each source-receiver combination \(\Leftrightarrow \) Set of Eigenrays

Characterize eigenrays by:
- EMISSION ANGLE \(\theta_e \)
- RECEPTION ANGLE \(\theta_r \)
- TRAVEL TIME \(t \)
Experiments: Geometry

AT-SEA EXPERIMENT (Mediterranean Sea, near Elba Island)

Acoustic waveguide: $L \sim 1.2$ km, $d \sim 110$ m, $\lambda \sim 0.4$ m at $f = 3.5$ kHz

![Diagram of AT-SEA experiment setup and water sound speed profile](image)

TANK EXPERIMENT

Ultrasonic waveguide: $L = 150$ cm, $d = 5$ cm, $\lambda \sim 1$ mm at $f = 1$ MHz

![Diagram of TANK experiment setup](image)
Experiments: Data Acquisition

• Each source fired one by one
• Each recorded signal characterized by \((z_e, z_r)\)
• Original data exist in \((t, z_e, z_r)\) - domain

TANK DATA
Experiments: Data Acquisition

- Each source fired one by one
- Each recorded signal characterized by \((z_e, z_r)\)
- Original data exist in \((t, z_e, z_r)\) - domain

AT-SEA DATA
Double Beamforming: Source Array

Beamforming on the **source array**: Time-delay according to an emission angle θ_e

Source array

![Source array diagram]

Time-delay:

$$\tau(\theta_e, z_{ei}) = \frac{(z_{ei} - z_{e0}) \sin \theta_e}{c}$$

where

- z_{e0} – position of the reference source,
- c – speed of sound

Each source-dependent pattern is time-shifted by its own $\tau(\theta_e, z_{ei})$ ⇒ Coherent summation of time-shifted waveforms for the **same** receiver z_{rj}

$$p'(t, \theta_e, z_{rj}) = \frac{1}{N_e} \sum_{i=1}^{N_e} p(t + \tau(\theta_e, z_{ei}), z_{ei}, z_{rj})$$

Transformation: $(t, z_e, z_r) \Rightarrow (t, \theta_e, z_r)$
Double Beamforming: Source Array

AT-SEA EXPERIMENT

\((t, z_e, z_r) - \text{domain}\)

\(z_r (\text{m})\)

\(z_e0\)

\(\theta_e = 8.4^\circ\)

\(\theta_e = -12^\circ\)

Time (s)

TANK EXPERIMENT

\((t, \theta_e, z_r) - \text{domain}\)

\(z_r (\text{mm})\)

\(z_e0\)

\(\theta_e = -8.5^\circ\)

\(\theta_e = -12.5^\circ\)

Time (ms)
Double Beamforming: Receive Array

Beamforming on the **receive array**: Time-delay according to a reception angle \(\theta_r \).

Receive array

Time-delay:

\[
\tau(\theta_r, z_{rj}) = \frac{(z_{rj} - z_{r0}) \sin \theta_r}{c}
\]

where

- \(z_{r0} \) – position of reference receiver,
- \(c \) – speed of sound

At given \(\theta_e = \text{const} \), each waveform is time-shifted by its own \(\tau(\theta_r, z_{rj}) \)

\[\Rightarrow\]

Coherent summation of time-shifted waveforms for a given \(\theta_r \)

TRANSFORMATION: \((t, \theta_e, z_r)\)-domain \(\Rightarrow\) \((t, \theta_e, \theta_r)\)-domain
Double Beamforming: Eigenray Identification

TANK EXPERIMENT

\((t, \theta_e, z_r)\) – domain

\[\theta_e = -8.5^\circ \]

\[\theta_e = -12.5^\circ \]

\(z_r\) (mm)

\begin{align*}
1010 & \quad 1020 & \quad 1030 & \quad 1040 & \quad 1050 \\
\end{align*}

time (ms)

\(\theta_e\) (deg)

\[\theta_e = -8.5^\circ \]

\[\theta_e = -12.5^\circ \]

\(\theta_r\) (deg)

\begin{align*}
-15 & \quad -10 & \quad -5 & \quad 0 & \quad 5 & \quad 10 & \quad 15 \\
\end{align*}

time (ms)

\begin{align*}
1010 & \quad 1020 & \quad 1030 & \quad 1040 & \quad 1050 \\
\end{align*}

\(\theta_e\) (deg)

\begin{align*}
-15 & \quad -10 & \quad -5 & \quad 0 & \quad 5 & \quad 10 & \quad 15 \\
\end{align*}

time (ms)

\(\theta_r\) (deg)

\begin{align*}
-15 & \quad -10 & \quad -5 & \quad 0 & \quad 5 & \quad 10 & \quad 15 \\
\end{align*}

time=1.028 ms

\[\theta_e = -12.5^\circ \]

\[\theta_e = -8.5^\circ \]

\(\theta_r\) (deg)

\begin{align*}
-15 & \quad -10 & \quad -5 & \quad 0 & \quad 5 & \quad 10 & \quad 15 \\
\end{align*}

time=1.042 ms
Double Beamforming: Eigenray Identification

AT-SEA EXPERIMENT

$(t, \theta_e, z_r) – \text{domain}$

Use eigenray **amplitudes** to get information on waveguide bottom
Bottom Parameters Retrieval

Waveguide with constant depth d

Intensity of an eigenray with n bottom reflections

$$I_n(\theta) = I_0 |R(\theta)|^{2n} \Rightarrow$$

Reflection coefficient

$$|R(\theta)|^2 = \left(\frac{I_n(\theta)}{I_0}\right)^{1/n}$$

Fit experimental $|R(\theta)|$ with the one predicted theoretically

$$\Rightarrow$$

Acoustic parameters of the waveguide bottom
Results: Tank Experiment

\[|R(\theta)|^2 = \left(\frac{I_n(\theta)}{I_0} \right)^{1/n} \]

MODEL

Plane wave incident on interface between infinite liquid and elastic media

Longitudinal: \(\nu_l > \nu_w \)
Shear: \(\nu_s < \nu_w \)

CRITICAL ANGLES:
longitudinal waves: 54º
shear waves: none

FROM FIT

\[\nu_s = 1380 \text{ m/s} \]
\[ab_s = 0.8 \text{ dB/\lambda} \]
Results: At-Sea Experiment

THEORETICAL MODEL
System of 5 liquid layers (no shear waves)

FITTING PARAMETERS
Layer thicknesses, sound speeds, absorption coefficients

FITTING PROCEDURE
Improved Neighbourhood Algorithm*
500,000 generated models ⇒
Select models with 1.5% deviation from the best model ⇒
Average depth-dependent bottom acoustic parameters

AVERAGE DEPTH-DEPENDENT PROFILES

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>MEAN</th>
<th>STD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1450</td>
<td>1500</td>
</tr>
<tr>
<td>1</td>
<td>1200</td>
<td>1400</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0.2</td>
</tr>
</tbody>
</table>

KEY OBSERVATIONS
- shallow top layer with speed of sound < speed of sound in water
- strong sound speed gradient between first and second layers
- deeper layer (2 – 3.5 m) with highest sound speed
Comparison with Other Techniques

- Similar geographic location
- Joint time- and frequency-domain technique*:
 • single source towed along sea surface
 • single receiver moored close to the seafloor
 • one bottom reflection

* Holland and Osler, *JASA* 107, 1263 (2000)
Conclusions

• DBF allows extraction of eigenrays according to arrival time t, emission angle θ_e and reception angle θ_r.

• New scheme developed, permitting extraction of bottom acoustic parameters from eigenray intensities.

• Proposed scheme used to perform geoacoustic inversion on the data collected in at-sea experiment.

• Retrieved sea bottom parameters are in good qualitative agreement with those determined from a different geoacoustic inversion scheme.*

* Holland and Osler, JASA 107, 1263 (2000)