Please refer to this paper as:

The problem is underdetermined. In other words, there is more than one model that explains the same data. To solve this problem, we must be satisfied by computing the best fit in some sense to these measurements, and first order perturbation to compute the linear system instead of computing the solution of a full nonlinear system. Since we used only linearized terms of variables, there are also terms in the matrix elements, these are not corrected to diagonalize the matrix. The linear equations may be inconsistent because of errors. We make errors in reading the parameters and in determining the matrix elements.

The matrix is not square, since in general we have more data than unknowns. This leads to two possible solutions:

\[x = \pm \lambda \]

In this paper we will not go beyond the model of velocity of S-waves and S-waves of density variations. The precision of Seismological Commission has a clear task in reducing these errors, and in selecting reliable observations. We must recognize depth of occlusion in a dense grid of stations on the continents. Seismological Commission can only be based on the result of its possibilities if we are willing to start without preliminary conclusions. These preliminary conclusions are based exclusively on methods to overcome the practical limitations. Let me first introduce the model for the problem of geometrical and physical interpretation. In this paper, we describe some of the results of this recent research. We have used far fewer data of a single observation of seismic information than we mentioned in the previous description. The interpretation without any deep physical model is still very uncertain. It was essentially the problem of the French Geographical Institute to determine the very deep model in the interior of the Earth from a few scattered seismic stations. It was essentially a low-observation, low-resolution problem. In this paper, we present the solution of the core as a low-resolution model of the Earth's interior in which we already present in a few scattered seismic stations. We would know very little about the structure of the Earth's interior in this case.
The text is too blurry and distorted to be transcribed accurately. It appears to be a page from a book or a similar document, but the content cannot be reliably read or transcribed.
Figure 5: The Fresnel width in the mantle (top scale) vs. the difference of slowwave permutations. The increase in resolution is noticeable.

Figure 4: As Figure 3, but now for a ray at 100°. By passing the Core-Mantle Boundary, where a sudden change occurs in the Earth, the Fresnel zones at 100° are drawn for 2.7μ sec period. The inner zone is for a wave with a period of 1.